13. List of References

  1. Akaike. Information theory as an extension of the maximum likelihood principle. In B.N. Petrov and F. Csaki, editors, Second International Symposium on Information Theory, pages 267–281, Akademiai Kiado, Budapest, 1973.
[Bernardo1992]J.M. Bernardo, J. Berger, A.P. Dawid, and J.F.M. Smith, editors. Bayesian Statistics 4. Oxford University Press, Oxford, 1992.
[Brooks2000]S.P. Brooks, E.A. Catchpole, and B.J.T. Morgan. Bayesian animal survival estimation. Statistical Science, 15: 357–376, 2000.
[Burnham2002]K.P. Burnham and D.R. Anderson. Model Selection and Multi-Model Inference: A Practical, Information-theoretic Approach. Springer, New York, 2002.
  1. Christakos. On the assimilation of uncertain physical knowledge bases: Bayesian and non-Bayesian techniques. Advances in Water Resources, 2002.
  1. Gamerman. Markov Chain Monte Carlo: statistical simulation for Bayesian inference. Chapman and Hall, 1997.
  1. Gelman and D.R. Rubin. A single series from the Gibbs sampler provides a false sense of security. In Bayesian Statistics (eds. J. Bernardo et al.) 1992, Oxford University Press, 625-31.
  1. Gelman, X.L. Meng, and H. Stern. Posterior predictive assessment of model fitness via realized discrepencies with discussion. Statistica Sinica, 6, 1996.
  1. Gelman, J.B. Carlin, H.S. Stern, and D.B. Rubin. Bayesian Data Analysis, Second Edition. Chapman and Hall/CRC, Boca Raton, FL, 2004.
  1. Geweke. Evaluating the accuracy of sampling-based approaches to calculating posterior moments. In Bernardo et al. 1992, pages 169–193.
  1. Haario, E. Saksman, and J. Tamminen. An adaptive metropolis algorithm. Bernoulli, 7(2):223–242, 2001.
[Jarrett1979]R.G. Jarrett. A note on the intervals between coal mining disasters. Biometrika, 66:191–193, 1979.
[Jaynes2003]E.T. Jaynes. Probability theory: the logic of science. Cambridge university press, 2003.
[Jordan2004]M.I. Jordan. Graphical models. Statist. Sci., 19(1):140–155, 2004.
  1. Kerman and A. Gelman. Fully Bayesian computing. Available at SSRN: http://ssrn.com/abstract=1010387, 2004.
[Langtangen2009]Hans Petter Langtangen. Python Scripting for Computational Science. Springer-Verlag, 2009.
[Lauritzen1990]S.L. Lauritzen, A.P. Dawid, B.N. Larsen, and H.G. Leimer. Independence properties of directed Markov fields. Networks, 20:491–505, 1990.
  1. Lutz. Learning Python. O’Reilly, 2007.
[Oberhumer2008]M.F.X.J. Oberhumer. LZO Real-Time Data Compression Library. 2008. URL http://www.oberhumer.com/opensource/lzo/.
  1. Plummer, N. Best, K. Cowles and K. Vines. coda: Output Analysis and Diagnostics for MCMC. R package version 0.13-3, 2008. URL http://CRAN.R-project.org/package=coda.
[R2010]R Development Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, 2010. URL http: //www.R-project.org/.
[Raftery1995a]A.E. Raftery and S.M. Lewis. The number of iterations, convergence diagnostics and generic metropolis al- gorithms. In D.J. Spiegelhalter W.R. Gilks and S. Richardson, editors, Practical Markov Chain Monte Carlo. Chapman and Hall, London, U.K., 1995.
[Raftery1995b]A.E. Raftery and S.M. Lewis. Gibbsit Version 2.0. 1995. URL http://lib.stat.cmu.edu/ general/gibbsit/.
  1. Roelofs, J. loup Gailly, M. Adler. zlib: A Massively Spiffy Yet Delicately Unobtrusive Compression Library. 2010. URL http://www.zlib.net/.
[Roberts2007]G.O. Roberts and J.S. Rosenthal. Implementing componentwise Hastings algorithms. Journal of Applied Probability, 44(2):458–475, 2007.
  1. Schwarz. Estimating the dimension of a model. The Annals of Statistics, 6(2):461–464, 1978.
  1. Seward. bzip2 and libbzip2, Version 1.0.5 – A Program and Library for Data Compression. 2007. URL http://www.bzip.org/.
  1. van Rossum. The Python Library Reference Release 2.6.5., 2010. URL http://docs. python.org/library/.

Project Versions

Previous topic

12. Appendix: Markov Chain Monte Carlo

This Page