
PyMC Documentation
Release 3.0a1

John Salvatier and Christopher Fonnesbeck

October 10, 2014

Contents

1 Appendix: Markov Chain Monte Carlo 3
1.1 Monte Carlo Methods in Bayesian Analysis . 3
1.2 Markov Chains . 6
1.3 Why MCMC Works: Reversible Markov Chains . 7
1.4 Gibbs Sampling . 8
1.5 The Metropolis-Hastings Algorithm . 8

2 Indices and tables 11

i

ii

PyMC Documentation, Release 3.0a1

Contents:

Contents 1

PyMC Documentation, Release 3.0a1

2 Contents

CHAPTER 1

Appendix: Markov Chain Monte Carlo

1.1 Monte Carlo Methods in Bayesian Analysis

Bayesian analysis often requires integration over multiple dimensions that is intractable both via analytic methods or
standard methods of numerical integration. However, it is often possible to compute these integrals by simulating
(drawing samples) from posterior distributions. For example, consider the expected value of a random variable x:

𝐸[x] =

∫︁
x𝑓(x)𝑑x, x = {𝑥1, ..., 𝑥𝑘}

where 𝑘 (the dimension of vector 𝑥) is perhaps very large. If we can produce a reasonable number of random vectors
{xi}, we can use these values to approximate the unknown integral. This process is known as Monte Carlo integration.
In general, MC integration allows integrals against probability density functions:

𝐼 =

∫︁
ℎ(x)𝑓(x)dx

to be estimated by finite sums:

𝐼 =
1

𝑛

𝑛∑︁
𝑖=1

ℎ(x𝑖),

where x𝑖 is a sample from 𝑓 . This estimate is valid and useful because:

• By the strong law of large numbers:

𝐼 → 𝐼 with probability 1

• Simulation error can be measured and controlled:

𝑉 𝑎𝑟(𝐼) =
1

𝑛(𝑛− 1)

𝑛∑︁
𝑖=1

(ℎ(x𝑖) − 𝐼)2 (1.1)

Why is this relevant to Bayesian analysis? If we replace 𝑓(x) with a posterior, 𝑓(𝜃|𝑑) and make ℎ(𝜃) an interesting
function of the unknown parameter, the resulting expectation is that of the posterior of ℎ(𝜃):

𝐸[ℎ(𝜃)|𝑑] =

∫︁
𝑓(𝜃|𝑑)ℎ(𝜃)𝑑𝜃 ≈ 1

𝑛

𝑛∑︁
𝑖=1

ℎ(𝜃) (1.2)

3

PyMC Documentation, Release 3.0a1

1.1.1 Rejection Sampling

Though Monte Carlo integration allows us to estimate integrals that are unassailable by analysis and standard numer-
ical methods, it relies on the ability to draw samples from the posterior distribution. For known parametric forms,
this is not a problem; probability integral transforms or bivariate techniques (e.g Box-Muller method) may be used to
obtain samples from uniform pseudo-random variates generated from a computer. Often, however, we cannot readily
generate random values from non-standard posteriors. In such instances, we can use rejection sampling to generate
samples.

Posit a function, 𝑓(𝑥) which can be evaluated for any value on the support of 𝑥 : 𝑆𝑥 = [𝐴,𝐵], but may not be
integrable or easily sampled from. If we can calculate the maximum value of 𝑓(𝑥), we can then define a rectangle that
is guaranteed to contain all possible values (𝑥, 𝑓(𝑥)). It is then trivial to generate points over the box and enumerate
the values that fall under the curve (Figure Rejection sampling of a bounded form. Area is estimated by the ratio of
accepted (open squares) to total points, multiplied by the rectangle area.).

 A B

Max f(x)

X

f(
X)

Figure 1.1: Rejection sampling of a bounded form. Area is estimated by the ratio of accepted (open squares) to total
points, multiplied by the rectangle area.

Points under curve
Points generated

× box area = lim
𝑛→∞

∫︁ 𝐵

𝐴

𝑓(𝑥)𝑑𝑥

This approach is useful, for example, in estimating the normalizing constant for posterior distributions.

If 𝑓(𝑥) has unbounded support (i.e. infinite tails), such as a Gaussian distribution, a bounding box is no longer

4 Chapter 1. Appendix: Markov Chain Monte Carlo

PyMC Documentation, Release 3.0a1

Figure 1.2: Rejection sampling of an unbounded form using an enveloping distribution.

1.1. Monte Carlo Methods in Bayesian Analysis 5

PyMC Documentation, Release 3.0a1

appropriate. We must specify a majorizing (or, enveloping) function, 𝑔(𝑥), which implies:

𝑔(𝑥) ≥ 𝑓(𝑥) ∀𝑥 ∈ (−∞,∞)

Having done this, we can now sample 𝑥𝑖 from 𝑔(𝑥) and accept or reject each of these values based upon 𝑓(𝑥𝑖).
Specifically, for each draw 𝑥𝑖, we also draw a uniform random variate 𝑢𝑖 and accept 𝑥𝑖 if 𝑢𝑖 < 𝑓(𝑥𝑖)/𝑐𝑔(𝑥𝑖), where
𝑐 is a constant (Figure Rejection sampling of an unbounded form using an enveloping distribution.). This approach is
made more efficient by choosing an enveloping distribution that is “close” to the target distribution, thus maximizing
the number of accepted points. Further improvement is gained by using optimized algorithms such as importance
sampling which, as the name implies, samples more frequently from important areas of the distribution.

Rejection sampling is usually subject to declining performance as the dimension of the parameter space increases, so
it is used less frequently than MCMC for evaluation of posterior distributions [Gamerman1997].

1.2 Markov Chains

A Markov chain is a special type of stochastic process. The standard definition of a stochastic process is an ordered
collection of random variables:

{𝑋𝑡 : 𝑡 ∈ 𝑇}

where 𝑡 is frequently (but not necessarily) a time index. If we think of 𝑋𝑡 as a state 𝑋 at time 𝑡, and invoke the
following dependence condition on each state:

𝑃𝑟(𝑋𝑡+1 = 𝑥𝑡+1|𝑋𝑡 = 𝑥𝑡, 𝑋𝑡−1 = 𝑥𝑡−1, . . . , 𝑋0 = 𝑥0) = 𝑃𝑟(𝑋𝑡+1 = 𝑥𝑡+1|𝑋𝑡 = 𝑥𝑡)

then the stochastic process is known as a Markov chain. This conditioning specifies that the future depends on the
current state, but not past states. Thus, the Markov chain wanders about the state space, remembering only where it
has just been in the last time step. The collection of transition probabilities is sometimes called a transition matrix
when dealing with discrete states, or more generally, a transition kernel.

In the context of Markov chain Monte Carlo, it is useful to think of the Markovian property as “mild non-
independence”. MCMC allows us to indirectly generate independent samples from a particular posterior distribution.

1.2.1 Jargon-busting

Before we move on, it is important to define some general properties of Markov chains. They are frequently encoun-
tered in the MCMC literature, and some will help us decide whether MCMC is producing a useful sample from the
posterior.

• Homogeneity: A Markov chain is homogeneous at step 𝑡 if the transition probabilities are independent of
time 𝑡.

• Irreducibility: A Markov chain is irreducible if every state is accessible in one or more steps from any other
state. That is, the chain contains no absorbing states. This implies that there is a non-zero probability of
eventually reaching state 𝑘 from any other state in the chain.

• Recurrence: States which are visited repeatedly are recurrent. If the expected time to return to a particular
state is bounded, this is known as positive recurrence, otherwise the recurrent state is null recurrent.
Further, a chain is Harris recurrent when it visits all states 𝑋 ∈ 𝑆 infinitely often in the limit as 𝑡 → ∞;
this is an important characteristic when dealing with unbounded, continuous state spaces. Whenever a
chain ends up in a closed, irreducible set of Harris recurrent states, it stays there forever and visits every
state with probability one.

• Stationarity: A stationary Markov chain produces the same marginal

6 Chapter 1. Appendix: Markov Chain Monte Carlo

PyMC Documentation, Release 3.0a1

distribution when multiplied by the transition kernel. Thus, if 𝑃 is some 𝑛× 𝑛 transition matrix:

𝜋P = 𝜋

𝑓𝑜𝑟𝑀𝑎𝑟𝑘𝑜𝑣𝑐ℎ𝑎𝑖𝑛 : 𝑚𝑎𝑡ℎ : ‘𝜋‘.𝑇ℎ𝑢𝑠, : 𝑚𝑎𝑡ℎ : ‘𝜋‘𝑖𝑠𝑛𝑜𝑙𝑜𝑛𝑔𝑒𝑟𝑠𝑢𝑏𝑠𝑐𝑟𝑖𝑝𝑡𝑒𝑑, 𝑎𝑛𝑑𝑖𝑠𝑟𝑒𝑓𝑒𝑟𝑟𝑒𝑑𝑡𝑜𝑎𝑠𝑡ℎ𝑒 * 𝑙𝑖𝑚𝑖𝑡𝑖𝑛𝑔𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 * 𝑜𝑓𝑡ℎ𝑒𝑐ℎ𝑎𝑖𝑛.𝐼𝑛𝑀𝐶𝑀𝐶, 𝑡ℎ𝑒𝑐ℎ𝑎𝑖𝑛𝑒𝑥𝑝𝑙𝑜𝑟𝑒𝑠𝑡ℎ𝑒𝑠𝑡𝑎𝑡𝑒𝑠𝑝𝑎𝑐𝑒𝑎𝑐𝑐𝑜𝑟𝑑𝑖𝑛𝑔𝑡𝑜𝑖𝑡𝑠𝑙𝑖𝑚𝑖𝑡𝑖𝑛𝑔𝑚𝑎𝑟𝑔𝑖𝑛𝑎𝑙𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛.

• Ergodicity: Ergodicity is an emergent property of Markov chains which are irreducible, positive Harris re-
current and aperiodic. Ergodicity is defined as:

lim
𝑛→∞

𝑃𝑟(𝑛)(𝜃𝑖 → 𝜃𝑗) = 𝜋(𝜃) ∀𝜃𝑖, 𝜃𝑗 ∈ Θ

𝑜𝑟𝑖𝑛𝑤𝑜𝑟𝑑𝑠, 𝑎𝑓𝑡𝑒𝑟𝑚𝑎𝑛𝑦𝑠𝑡𝑒𝑝𝑠𝑡ℎ𝑒𝑚𝑎𝑟𝑔𝑖𝑛𝑎𝑙𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑜𝑓𝑡ℎ𝑒𝑐ℎ𝑎𝑖𝑛𝑖𝑠𝑡ℎ𝑒𝑠𝑎𝑚𝑒𝑎𝑡𝑜𝑛𝑒𝑠𝑡𝑒𝑝𝑎𝑠𝑎𝑡𝑎𝑙𝑙𝑜𝑡ℎ𝑒𝑟𝑠𝑡𝑒𝑝𝑠.𝑇ℎ𝑖𝑠𝑖𝑚𝑝𝑙𝑖𝑒𝑠𝑡ℎ𝑎𝑡𝑜𝑢𝑟𝑀𝑎𝑟𝑘𝑜𝑣𝑐ℎ𝑎𝑖𝑛,𝑤ℎ𝑖𝑐ℎ𝑤𝑒𝑟𝑒𝑐𝑎𝑙𝑙𝑖𝑠𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡, 𝑐𝑎𝑛𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑠𝑎𝑚𝑝𝑙𝑒𝑠𝑡ℎ𝑎𝑡𝑎𝑟𝑒𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡𝑖𝑓𝑤𝑒𝑤𝑎𝑖𝑡𝑙𝑜𝑛𝑔𝑒𝑛𝑜𝑢𝑔ℎ𝑏𝑒𝑡𝑤𝑒𝑒𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠.𝐼𝑓𝑖𝑡𝑚𝑒𝑎𝑛𝑠𝑎𝑛𝑦𝑡ℎ𝑖𝑛𝑔𝑡𝑜𝑦𝑜𝑢, 𝑒𝑟𝑔𝑜𝑑𝑖𝑐𝑖𝑡𝑦𝑖𝑠𝑡ℎ𝑒𝑎𝑛𝑎𝑙𝑜𝑔𝑢𝑒𝑜𝑓𝑡ℎ𝑒𝑠𝑡𝑟𝑜𝑛𝑔𝑙𝑎𝑤𝑜𝑓𝑙𝑎𝑟𝑔𝑒𝑛𝑢𝑚𝑏𝑒𝑟𝑠𝑓𝑜𝑟𝑀𝑎𝑟𝑘𝑜𝑣𝑐ℎ𝑎𝑖𝑛𝑠.𝐹𝑜𝑟𝑒𝑥𝑎𝑚𝑝𝑙𝑒, 𝑡𝑎𝑘𝑒𝑣𝑎𝑙𝑢𝑒𝑠 : 𝑚𝑎𝑡ℎ : ‘𝜃𝑖+1, . . . , 𝜃𝑖+𝑛‘𝑓𝑟𝑜𝑚𝑎𝑐ℎ𝑎𝑖𝑛𝑡ℎ𝑎𝑡ℎ𝑎𝑠𝑟𝑒𝑎𝑐ℎ𝑒𝑑𝑎𝑛𝑒𝑟𝑔𝑜𝑑𝑖𝑐𝑠𝑡𝑎𝑡𝑒.𝐴𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑜𝑓𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡𝑐𝑎𝑛𝑡ℎ𝑒𝑛𝑏𝑒𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑𝑏𝑦 :

1

𝑛

𝑖+𝑛∑︁
𝑗=𝑖+1

ℎ(𝜃𝑗) ≈
∫︁

𝑓(𝜃)ℎ(𝜃)𝑑𝜃

1.3 Why MCMC Works: Reversible Markov Chains

Markov chain Monte Carlo simulates a Markov chain for which some function of interest (e.g. the joint distribution
of the parameters of some model) is the unique, invariant limiting distribution. An invariant distribution with respect
to some Markov chain with transition kernel 𝑃𝑟(𝑦 | 𝑥) implies that:∫︁

𝑥

𝑃𝑟(𝑦 | 𝑥)𝜋(𝑥)𝑑𝑥 = 𝜋(𝑦).

Invariance is guaranteed for any reversible Markov chain. Consider a Markov chain in reverse sequence:
{𝜃(𝑛), 𝜃(𝑛−1), ..., 𝜃(0)}. This sequence is still Markovian, because:

𝑃𝑟(𝜃(𝑘) = 𝑦 | 𝜃(𝑘+1) = 𝑥, 𝜃(𝑘+2) = 𝑥1, . . .) = 𝑃𝑟(𝜃(𝑘) = 𝑦 | 𝜃(𝑘+1) = 𝑥)

Forward and reverse transition probabilities may be related through Bayes theorem:

𝑃𝑟(𝜃(𝑘+1) = 𝑥 | 𝜃(𝑘) = 𝑦)𝜋(𝑘)(𝑦)

𝜋(𝑘+1)(𝑥)

Though not homogeneous in general, 𝜋 becomes homogeneous if Do you ever call the stationary distribution itself
homogeneous?:

• 𝑛 → ∞

• 𝜋(𝑖) = 𝜋 for some 𝑖 < 𝑘

If this chain is homogeneous it is called reversible, because it satisfies the detailed balance equation:

𝜋(𝑥)𝑃𝑟(𝑦 | 𝑥) = 𝜋(𝑦)𝑃𝑟(𝑥 | 𝑦)

Reversibility is important because it has the effect of balancing movement through the entire state space. When a
Markov chain is reversible, 𝜋 is the unique, invariant, stationary distribution of that chain. Hence, if 𝜋 is of interest,
we need only find the reversible Markov chain for which 𝜋 is the limiting distribution. This is what MCMC does!

1.3. Why MCMC Works: Reversible Markov Chains 7

PyMC Documentation, Release 3.0a1

1.4 Gibbs Sampling

The Gibbs sampler is the simplest and most prevalent MCMC algorithm. If a posterior has 𝑘 parameters to be esti-
mated, we may condition each parameter on current values of the other 𝑘−1 parameters, and sample from the resultant
distributional form (usually easier), and repeat this operation on the other parameters in turn. This procedure generates
samples from the posterior distribution. Note that we have now combined Markov chains (conditional independence)
and Monte Carlo techniques (estimation by simulation) to yield Markov chain Monte Carlo.

Here is a stereotypical Gibbs sampling algorithm:

As we can see from the algorithm, each distribution is conditioned on the last iteration of its chain values, constituting
a Markov chain as advertised. The Gibbs sampler has all of the important properties outlined in the previous section:
it is aperiodic, homogeneous and ergodic. Once the sampler converges, all subsequent samples are from the target
distribution. This convergence occurs at a geometric rate.

1. Choose starting values for states (parameters): 𝜃 = [𝜃
(0)
1 , 𝜃

(0)
2 , . . . , 𝜃

(0)
𝑘]

2. Initialize counter 𝑗 = 1

3. Draw the following values from each of the 𝑘 conditional distributions:

𝜃
(𝑗)
1 ∼ 𝜋(𝜃1|𝜃(𝑗−1)

2 , 𝜃
(𝑗−1)
3 , . . . , 𝜃

(𝑗−1)
𝑘−1 , 𝜃

(𝑗−1)
𝑘)

𝜃
(𝑗)
2 ∼ 𝜋(𝜃2|𝜃(𝑗)1 , 𝜃

(𝑗−1)
3 , . . . , 𝜃

(𝑗−1)
𝑘−1 , 𝜃

(𝑗−1)
𝑘)

𝜃
(𝑗)
3 ∼ 𝜋(𝜃3|𝜃(𝑗)1 , 𝜃

(𝑗)
2 , . . . , 𝜃

(𝑗−1)
𝑘−1 , 𝜃

(𝑗−1)
𝑘)

...
𝜃
(𝑗)
𝑘−1 ∼ 𝜋(𝜃𝑘−1|𝜃(𝑗)1 , 𝜃

(𝑗)
2 , . . . , 𝜃

(𝑗)
𝑘−2, 𝜃

(𝑗−1)
𝑘)

𝜃
(𝑗)
𝑘 ∼ 𝜋(𝜃𝑘|𝜃(𝑗)1 , 𝜃

(𝑗)
2 , 𝜃

(𝑗)
4 , . . . , 𝜃

(𝑗)
𝑘−2, 𝜃

(𝑗)
𝑘−1)

4. Increment 𝑗 and repeat until convergence occurs.

1.5 The Metropolis-Hastings Algorithm

The key to success in applying the Gibbs sampler to the estimation of Bayesian posteriors is being able to specify the
form of the complete conditionals of 𝜃. In fact, the algorithm cannot be implemented without them. Of course, the
posterior conditionals cannot always be neatly specified. In contrast to the Gibbs algorithm, the Metropolis-Hastings
algorithm generates candidate state transitions from an alternate distribution, and accepts or rejects each candidate
probabilistically.

Let us first consider a simple Metropolis-Hastings algorithm for a single parameter, 𝜃. We will use a standard sampling
distribution, referred to as the proposal distribution, to produce candidate variables 𝑞𝑡(𝜃

′|𝜃). That is, the generated
value, 𝜃′, is a possible next value for 𝜃 at step 𝑡+1. We also need to be able to calculate the probability of moving back
to the original value from the candidate, or 𝑞𝑡(𝜃|𝜃′). These probabilistic ingredients are used to define an acceptance
ratio:

𝑎(𝜃′, 𝜃) =
𝑞𝑡(𝜃

′|𝜃)𝜋(𝜃′)

𝑞𝑡(𝜃|𝜃′)𝜋(𝜃)

The value of 𝜃(𝑡+1) is then determined by:

𝜃(𝑡+1) =

{︂
𝜃′ with prob. min(𝑎(𝜃′, 𝜃), 1)
𝜃(𝑡) with prob. 1 − min(𝑎(𝜃′, 𝜃), 1)

8 Chapter 1. Appendix: Markov Chain Monte Carlo

PyMC Documentation, Release 3.0a1

This transition kernel implies that movement is not guaranteed at every step. It only occurs if the suggested transition
is likely based on the acceptance ratio.

A single iteration of the Metropolis-Hastings algorithm proceeds as follows:

The original form of the algorithm specified by Metropolis required that 𝑞𝑡(𝜃′|𝜃) = 𝑞𝑡(𝜃|𝜃′), which reduces 𝑎(𝜃′, 𝜃) to
𝜋(𝜃′)/𝜋(𝜃), but this is not necessary. In either case, the state moves to high-density points in the distribution with high
probability, and to low-density points with low probability. After convergence, the Metropolis-Hastings algorithm
describes the full target posterior density, so all points are recurrent.

1. Sample 𝜃′ from 𝑞(𝜃′|𝜃(𝑡)).

2. Generate a Uniform[0,1] random variate 𝑢.

3. If 𝑎(𝜃′, 𝜃) > 𝑢 then 𝜃(𝑡+1) = 𝜃′, otherwise 𝜃(𝑡+1) = 𝜃(𝑡).

1.5.1 Random-walk Metropolis-Hastings

A practical implementation of the Metropolis-Hastings algorithm makes use of a random-walk proposal. Recall that a
random walk is a Markov chain that evolves according to:

𝜃(𝑡+1) = 𝜃(𝑡) + 𝜖𝑡

𝜖𝑡 ∼ 𝑓(𝜑)

As applied to the MCMC sampling, the random walk is used as a proposal distribution, whereby dependent proposals
are generated according to:

𝑞(𝜃′|𝜃(𝑡)) = 𝑓(𝜃′ − 𝜃(𝑡)) = 𝜃(𝑡) + 𝜖𝑡

Generally, the density generating 𝜖𝑡 is symmetric about zero, resulting in a symmetric chain. Chain symmetry implies
that 𝑞(𝜃′|𝜃(𝑡)) = 𝑞(𝜃(𝑡)|𝜃′), which reduces the Metropolis-Hastings acceptance ratio to:

𝑎(𝜃′, 𝜃) =
𝜋(𝜃′)

𝜋(𝜃)

The choice of the random walk distribution for 𝜖𝑡 is frequently a normal or Student’s 𝑡 density, but it may be any
distribution that generates an irreducible proposal chain.

An important consideration is the specification of the scale parameter for the random walk error distribution. Large
values produce random walk steps that are highly exploratory, but tend to produce proposal values in the tails of the
target distribution, potentially resulting in very small acceptance rates. Conversely, small values tend to be accepted
more frequently, since they tend to produce proposals close to the current parameter value, but may result in chains
that mix very slowly. Some simulation studies suggest optimal acceptance rates in the range of 20-50%. It is often
worthwhile to optimize the proposal variance by iteratively adjusting its value, according to observed acceptance rates
early in the MCMC simulation [Gamerman1997].

1.5. The Metropolis-Hastings Algorithm 9

PyMC Documentation, Release 3.0a1

10 Chapter 1. Appendix: Markov Chain Monte Carlo

CHAPTER 2

Indices and tables

• genindex

• modindex

• search

11

	Appendix: Markov Chain Monte Carlo
	Monte Carlo Methods in Bayesian Analysis
	Markov Chains
	Why MCMC Works: Reversible Markov Chains
	Gibbs Sampling
	The Metropolis-Hastings Algorithm

	Indices and tables

